Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaquabis[3-(2-pyridyl)-1H-pyrazole- $\kappa^2 N^2 N^3$ lcadmium(II) dinitrate

Chun-Sen Liu

Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: chunsenliu@mail.nankai.edu.cn

Received 23 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.057; data-to-parameter ratio = 15.7.

In the title centrosymmetric compound, $[Cd(C_8H_7N_3)_2]$ - $(H_2O)_2$ (NO₃)₂, the Cd^{II} atom lies on a center of symmetry and is six-coordinated by four N donors from two distinct chelating 3-(2-pyridyl)-1H-pyrazole ligands and two O atoms from two water molecules, in a distorted octahedral geometry. The Cd^{II} mononuclear units and nitrate ions are linked through intermolecular $O-H \cdots O$, $N-H \cdots O$ and $C-H \cdots O$ hydrogen-bonding interactions, forming a three-dimensional framework.

Related literature

For related literature, see: Bell et al. (2003); Hu et al. (2006); Liu et al. (2006, 2007); Paul et al. (2004); Steel (2005); Ward et al. (2001); Zou et al. (2004, 2005, 2006). For hydrogen-bond details, see: Desiraju & Steiner (1999).

Experimental

Crystal data [Cd(C₈H₇N₃)₂(H₂O)₂](NO₃)₂ $M_{\rm r} = 562.78$ Monoclinic, $P2_1/n$ a = 8.1283 (16) Åb = 10.461 (2) Å c = 12.309 (3) Å $\beta = 94.04 (3)^{\circ}$

V = 1044.0 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.11 \text{ mm}^{-1}$ T = 293 (2) K $0.22\,\times\,0.18\,\times\,0.16$ mm

Data collection

Bruker SMART CCD area-detector	6639 measured reflections
diffractometer	2377 independent reflections
Absorption correction: multi-scan	1810 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.032$
$T_{\min} = 0.795, \ T_{\max} = 0.845$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	151 parameters
$wR(F^2) = 0.057$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
2377 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

(

Selected geometric parameters (Å, °).

Cd1—N3 Cd1—O1W	2.2900 (17) 2.3133 (18)	Cd1-N2	2.3539 (18)
	180 91.87 (6) 88.13 (6) 180 72.87 (6)	$\begin{array}{c} 01W - Cd1 - N2\\N3 - Cd1 - N2^{i}\\01W - Cd1 - N2^{i}\\N2 - Cd1 - N2^{i}\end{array}$	93.57 (7) 107.13 (6) 86.43 (7) 180

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WA\cdots O2^{ii}$	0.85	2.34	3.096 (3)	148
$O1W - H1WA \cdots O3^{ii}$	0.85	2.28	3.036 (3)	149
$O1W - H1WB \cdots O2^{iii}$	0.85	2.12	2.944 (3)	164
$N1 - H1B \cdots O1^{iv}$	0.86	2.10	2.956 (3)	171
$N1 - H1B \cdots O3^{iv}$	0.86	2.60	3.170 (3)	125
$O1W - H1WB \cdots O1^{iii}$	0.85	2.50	3.138 (2)	133
$C1 - H1A \cdots O3^{v}$	0.93	2.53	3.319 (3)	143
$C8-H8A\cdotsO1^{vi}$	0.93	2.39	3.253 (3)	153

Symmetry codes: (ii) -x, -y+2, -z+1; (iii) $x+\frac{1}{2}, -y+\frac{3}{2}, z-\frac{1}{2}$; (iv) $x + \frac{3}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (vi) $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The author thanks Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, and Nankai University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2499).

References

- Bell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432-2433.
- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.

- Hu, T.-L., Li, J.-R., Liu, C.-S., Shi, X.-S., Zhou, J.-N., Bu, X.-H. & Ribas, J. (2006). *Inorg. Chem.* **45**, 162–173.
- Liu, C.-S., Li, J.-R., Li, C.-Y., Wang, J.-J. & Bu, X.-H. (2007). Inorg. Chim. Acta, 360, 2532–2540.
- Liu, C.-S., Shi, X.-S., Li, J.-R., Wang, J.-J. & Bu, X.-H. (2006). Cryst.Growth Des. 6, 656-663.
- Paul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). J. Chem. Soc. Dalton Trans. pp. 3453–3458.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.
- Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.
- Zou, R.-Q., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 5382– 5386.
- Zou, R.-Q., Liu, C.-S., Huang, Z., Hu, T.-L. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 99–108.
- Zou, R.-Q., Liu, C.-S., Shi, X.-S., Bu, X.-H. & Ribas, J. (2005). CrystEngComm, 7, 722–727.

supplementary materials

Acta Cryst. (2007). E63, m3038-m3039 [doi:10.1107/S1600536807054918]

Diaquabis[3-(2-pyridyl)-1*H*-pyrazole- $\kappa^2 N^2$, N^3]cadmium(II) dinitrate

C.-S. Liu

Comment

In recent years, much attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward *et al.*, 2001). Many novel functional complexes with 3-(2-pyridyl)-1*H*-pyrazole (*L*) and/or 3-(2-pyridyl)pyrazole ligands have been reported (Bell *et al.*, 2003; Paul *et al.*, 2004; Singh *et al.*, 2003; Ward *et al.*, 2001). Recently, we have used 3-(2-pyridyl)-1*H*pyrazole and its derivatives to obtain complexes with various structures, including discrete multinuclear molecules, one- and two-dimensional coordination polymers, which exhibit luminescent and magnetic properties (Hu *et al.*, 2006; Liu *et al.*, 2006, 2007; Zou *et al.*, 2004,2005,2006). Now we report here the crystal structure of a cadmium(II) complex of *L* ligand, $[Cd(L)_2(H_2O)_2]^{2+}\cdot 2NO_3^{2-}$, the title compound.

In the title centrosymmetric complex, the Cd^{II} center is six-coordinated by four N donors from two *L* ligands and two O atoms from two water molecules (Table 1). The *L* ligand chelates to the Cd^{II} atom, which lies on an inversion center, in a nearly isobidentate manner [Cd1—N2 = 2.3539 (18) Å and Cd1—N3 = 2.2900 (17) Å]. The two other coordination sites are occupied by two water molecules. The coordination geometry around the Cd^{II} center can be described as a distorted octahedron (Fig. 1). The distortion from the ideal octahedral geometry is evident from the bond angles given in Table 1.

The Cd^{II} mononuclear units are linked to nitrate anions through intermolecular O–H···O, N–H···O and C–H···O (Desiraju & Steiner, 1999) hydrogen-bonding interactions (Table 2) involving the coordinated water molecules and free nitrate anions, forming a three-dimensional framework (Fig. 2).

Experimental

3-(2-Pyridyl)-1*H*-pyrazole) (0.1 mmol) and Cd(NO₃)₂ (0.1 mmol) were added to methanol (15 ml) containing water (5 ml). In few minutes, a white solid appeared which then was filtered. The resulting solution was kept at room temperature. Colourless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days (yield: 30%). Analysis calculated for ($C_{16}H_{18}CdN_8O_8$): C 34.15, H 3.22, N 19.91%; found: C 34.26, H 3.14, N 18.77%.

Refinement

H atoms of the water molecule were located in a difference map and were allowed to ride on the parent atom, with $U_{iso} = 1.2U_{eq}(O)$. The remaining H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å, N—H = 0.86 Å and i> $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (1 - x, 2 - y, 1 - z).

Fig. 2. Part of the crystal packing in the title compound. Hydrogen bonds are shown as dashed lines. For clarity only H atoms involved in the interactions are shown.

Diaquabis[3-(2-pyridyl)-1*H*-pyrazole- $\kappa^2 N^2$, N^3] cadmium(II) dinitrate

Crystal	data
---------	------

[Cd(C ₈ H ₇ N ₃) ₂ (H ₂ O) ₂](NO ₃) ₂	$F_{000} = 564$
$M_r = 562.78$	$D_{\rm x} = 1.790 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 666 reflections
<i>a</i> = 8.1283 (16) Å	$\theta = 2.3 - 22.5^{\circ}$
b = 10.461 (2) Å	$\mu = 1.11 \text{ mm}^{-1}$
c = 12.309 (3) Å	T = 293 (2) K
$\beta = 94.04 \ (3)^{\circ}$	Block, colourless
$V = 1044.0 (4) \text{ Å}^3$	$0.22\times0.18\times0.16~mm$
Z = 2	

Data collection

diffractometer 2377 ind	rependent reflections
Radiation source: fine-focus sealed tube 1810 ref	Plections with $I > 2\sigma(I)$
Monochromator: graphite $R_{\rm int} = 0.0$	032
$T = 293(2) \text{ K} \qquad $	7.5°
φ and ω scans $\theta_{min} = 2$.	.6°
Absorption correction: multi-scan $h = -10-$ (SADABS; Bruker, 1998)	→ 10
$T_{\min} = 0.795, \ T_{\max} = 0.845$ $k = -14-$	→13
6639 measured reflections $l = -15-$	→15

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{\text{max}} = 0.001$
2377 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
151 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.5000	1.0000	0.5000	0.03912 (8)
C1	0.7329 (3)	0.6068 (2)	0.5375 (2)	0.0564 (6)
H1A	0.8148	0.5450	0.5353	0.068*
C2	0.5940 (3)	0.5968 (2)	0.5903 (2)	0.0559 (6)
H2A	0.5605	0.5283	0.6315	0.067*
C3	0.5102 (3)	0.7142 (2)	0.56918 (17)	0.0423 (5)
C4	0.3529 (3)	0.7578 (2)	0.60517 (17)	0.0419 (5)
C5	0.2468 (3)	0.6775 (2)	0.6560 (2)	0.0593 (7)
H5A	0.2746	0.5923	0.6686	0.071*
C6	0.1009 (3)	0.7249 (3)	0.6875 (2)	0.0669 (8)
H6A	0.0294	0.6719	0.7224	0.080*
C7	0.0596 (3)	0.8489 (3)	0.6681 (2)	0.0610 (7)
H7A	-0.0398	0.8816	0.6890	0.073*
C8	0.1675 (3)	0.9247 (2)	0.6172 (2)	0.0536 (6)
H8A	0.1393	1.0095	0.6030	0.064*
N1	0.7326 (2)	0.72088 (19)	0.48873 (18)	0.0529 (5)
H1B	0.8102	0.7479	0.4506	0.064*
N2	0.5972 (2)	0.78798 (17)	0.50643 (15)	0.0444 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

N3	0.3126 (2)	0.88119 (17)	0.58709 (14)	0.0416 (4)
N4	-0.4146 (2)	0.79729 (19)	0.84554 (14)	0.0449 (4)
01	-0.4736 (2)	0.69650 (17)	0.87871 (16)	0.0685 (5)
O2	-0.2770 (2)	0.7968 (2)	0.81080 (17)	0.0818 (6)
O3	-0.4952 (3)	0.89658 (17)	0.84575 (19)	0.0767 (6)
O1W	0.3392 (2)	0.96843 (16)	0.33963 (14)	0.0583 (5)
H1WA	0.3421	1.0117	0.2814	0.070*
H1WB	0.2902	0.8984	0.3236	0.070*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03983 (12)	0.03118 (11)	0.04703 (13)	-0.00183 (10)	0.00790 (8)	0.00727 (10)
C1	0.0514 (14)	0.0395 (13)	0.0765 (18)	0.0158 (11)	-0.0076 (13)	-0.0038 (12)
C2	0.0613 (15)	0.0411 (12)	0.0636 (16)	0.0000 (12)	-0.0068 (12)	0.0072 (12)
C3	0.0481 (12)	0.0337 (10)	0.0436 (12)	-0.0016 (10)	-0.0064 (9)	0.0007 (9)
C4	0.0517 (12)	0.0379 (11)	0.0353 (11)	-0.0125 (10)	-0.0017 (9)	0.0024 (9)
C5	0.0677 (17)	0.0509 (14)	0.0596 (15)	-0.0166 (13)	0.0075 (13)	0.0097 (12)
C6	0.0603 (16)	0.075 (2)	0.0674 (17)	-0.0231 (15)	0.0199 (14)	0.0018 (15)
C7	0.0428 (13)	0.0773 (19)	0.0655 (16)	-0.0073 (13)	0.0222 (12)	-0.0123 (15)
C8	0.0530 (13)	0.0493 (14)	0.0594 (15)	-0.0037 (12)	0.0100 (12)	-0.0038 (12)
N1	0.0448 (10)	0.0454 (11)	0.0690 (13)	0.0079 (9)	0.0072 (9)	-0.0014 (10)
N2	0.0426 (10)	0.0353 (9)	0.0553 (11)	0.0040 (8)	0.0036 (8)	0.0031 (9)
N3	0.0402 (9)	0.0412 (10)	0.0440 (10)	-0.0051 (8)	0.0069 (8)	0.0009 (8)
N4	0.0498 (11)	0.0432 (10)	0.0414 (10)	-0.0084 (9)	0.0017 (8)	-0.0012 (8)
01	0.0753 (12)	0.0446 (10)	0.0860 (13)	-0.0143 (9)	0.0072 (10)	0.0178 (10)
O2	0.0574 (11)	0.1002 (16)	0.0920 (15)	-0.0163 (11)	0.0359 (10)	-0.0100 (13)
O3	0.0805 (13)	0.0438 (10)	0.1049 (16)	0.0108 (10)	-0.0012 (11)	-0.0007 (11)
O1W	0.0690 (11)	0.0541 (10)	0.0504 (9)	-0.0187 (8)	-0.0056 (8)	0.0104 (8)

Geometric parameters (Å, °)

Cd1—N3	2.2900 (17)	C5—C6	1.367 (4)
Cd1—N3 ⁱ	2.2900 (17)	C5—H5A	0.93
Cd1—O1W ⁱ	2.3133 (18)	C6—C7	1.357 (4)
Cd1—O1W	2.3133 (18)	С6—Н6А	0.93
Cd1—N2	2.3539 (18)	С7—С8	1.366 (3)
Cd1—N2 ⁱ	2.3539 (18)	C7—H7A	0.93
C1—N1	1.336 (3)	C8—N3	1.341 (3)
C1—C2	1.346 (4)	C8—H8A	0.93
C1—H1A	0.93	N1—N2	1.337 (2)
C2—C3	1.420 (3)	N1—H1B	0.86
C2—H2A	0.93	N4—O2	1.226 (2)
C3—N2	1.330 (3)	N4—O3	1.228 (2)
C3—C4	1.456 (3)	N4—O1	1.239 (2)
C4—N3	1.346 (3)	O1W—H1WA	0.85
C4—C5	1.384 (3)	O1W—H1WB	0.85
N3—Cd1—N3 ⁱ	180	C6—C5—C4	119.3 (3)

N3—Cd1—O1W ⁱ	91.87 (6)	C6—C5—H5A	120.4
N3 ⁱ —Cd1—O1W ⁱ	88.13 (6)	С4—С5—Н5А	120.4
N3—Cd1—O1W	88.13 (6)	C7—C6—C5	120.4 (2)
N3 ⁱ —Cd1—O1W	91.87 (6)	С7—С6—Н6А	119.8
O1W ⁱ —Cd1—O1W	180	С5—С6—Н6А	119.8
N3—Cd1—N2	72.87 (6)	C6—C7—C8	118.4 (2)
$N3^{i}$ —Cd1—N2	107.13 (6)	С6—С7—Н7А	120.8
$O1W^{i}$ Cd1 N2	86 43 (7)	С8—С7—Н7А	120.8
O1W - Cd1 - N2	93 57 (7)	N3_C8_C7	122.0
$N_3 - Cd_1 - N_2^i$	107 13 (6)	N3-C8-H8A	118.8
$N3^{i}$ Cd1 $N2^{i}$	72.87 (6)	C7—C8—H8A	118.8
$N_{i} = C_{i} = N_{i}^{i}$	93 57 (7)	C1-N1-N2	111.8 (2)
$O_1 W = Cd_1 = N2^i$	86 43 (7)	C1_N1_H1B	124.1
$N_2 = C_1 = N_2^{i}$	180	N2 N1 H1P	124.1
$N_2 - Cd_1 - N_2$	108 2 (2)	$N_2 = N_1 = \Pi \Pi B$	124.1
NI - CI - CZ	108.2 (2)	$C_3 = N_2 = N_1$	105.52(17)
NI = CI = HIA	125.9	$C_3 - N_2 - C_{d1}$	112.07 (13)
$C_2 = C_1 = HIA$	125.9	N1 - N2 - Cd1	140.14 (14)
C1 = C2 = C3	104.6 (2)	$C_8 = N_3 = C_4$	119.2 (2)
C1 - C2 - H2A	127.7	C8 = N3 = Cd1	124.93 (16)
C3—C2—H2A	127.7	C4—N3—Cd1	115.83 (14)
N2—C3—C2	109.9 (2)	O2—N4—O3	120.3 (2)
N2—C3—C4	120.58 (18)	O2—N4—O1	119.7 (2)
C2—C3—C4	129.5 (2)	O3—N4—O1	120.0 (2)
N3—C4—C5	120.3 (2)	Cd1—O1W—H1WA	126.6
N3—C4—C3	117.32 (18)	Cd1—O1W—H1WB	123.3
C5—C4—C3	122.4 (2)	H1WA—O1W—H1WB	107.7
N1—C1—C2—C3	0.1 (3)	O1W ⁱ —Cd1—N2—C3	83.94 (15)
C1—C2—C3—N2	0.3 (3)	O1W—Cd1—N2—C3	-96.06 (15)
C1—C2—C3—C4	179.9 (2)	N3—Cd1—N2—N1	-168.5 (2)
N2-C3-C4-N3	-10.1 (3)	N3 ⁱ —Cd1—N2—N1	11.5 (2)
C2-C3-C4-N3	170.3 (2)	O1W ⁱ —Cd1—N2—N1	-75.4 (2)
N2-C3-C4-C5	169.8 (2)	O1W—Cd1—N2—N1	104.6 (2)
C2—C3—C4—C5	-9.8 (4)	C7—C8—N3—C4	1.5 (4)
N3—C4—C5—C6	0.1 (4)	C7—C8—N3—Cd1	179.34 (19)
C3—C4—C5—C6	-179.9 (2)	C5—C4—N3—C8	-1.1 (3)
C4—C5—C6—C7	0.7 (4)	C3—C4—N3—C8	178.82 (19)
C5—C6—C7—C8	-0.3 (4)	C5—C4—N3—Cd1	-179.15 (17)
C6—C7—C8—N3	-0.8 (4)	C3—C4—N3—Cd1	0.8 (2)
C2-C1-N1-N2	-0.4 (3)	O1W ⁱ —Cd1—N3—C8	100.70 (18)
C2—C3—N2—N1	-0.5 (2)	O1W—Cd1—N3—C8	-79.30 (18)
C4—C3—N2—N1	179.83 (19)	N2—Cd1—N3—C8	-173.62 (19)
C2—C3—N2—Cd1	-166.96 (15)	N2 ⁱ —Cd1—N3—C8	6.38 (19)
C4—C3—N2—Cd1	13.4 (2)	O1W ⁱ —Cd1—N3—C4	-81.39 (16)
C1—N1—N2—C3	0.6 (3)	O1W—Cd1—N3—C4	98.61 (16)
C1—N1—N2—Cd1	160.79 (18)	N2—Cd1—N3—C4	4.29 (14)

supplementary materials

N3—Cd1—N2—C3	-9.12 (14)	N2 ⁱ —Cd1—N3—C4	4	-175.71 (14)
N3 ⁱ —Cd1—N2—C3	170.88 (14)			
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+$	1.			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1W—H1WA···O2 ⁱⁱ	0.85	2.34	3.096 (3)	148
O1W—H1WA···O3 ⁱⁱ	0.85	2.28	3.036 (3)	149
O1W—H1WB···O2 ⁱⁱⁱ	0.85	2.12	2.944 (3)	164
N1—H1B…O1 ^{iv}	0.86	2.10	2.956 (3)	171
N1—H1B····O3 ^{iv}	0.86	2.60	3.170 (3)	125
O1W—H1WB…O1 ⁱⁱⁱ	0.85	2.50	3.138 (2)	133
C1—H1A…O3 ^v	0.93	2.53	3.319 (3)	143
C8—H8A···O1 ^{vi}	0.93	2.39	3.253 (3)	153
$C_{\text{contractions}}$ and $C_{\text{contractions}}$ $C_{\text{contractions}$ $C_{\text{contractions}}$ $C_{\text{contractions}}$ $C_{\text{contractions}}$ $C_{\text{contractions}$ $C_{\text{contractions}}$ $C_{\text{contractions}$ $C_{\text{contractions}}$ C_{con	(33) = 1/2 = 1/2 = 1	(2, (3, 2), 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	(), ()	$2 = \frac{12}{2}$, () $1/2$

Symmetry codes: (ii) -x, -y+2, -z+1; (iii) x+1/2, -y+3/2, z-1/2; (iv) x+3/2, -y+3/2, z-1/2; (v) -x+1/2, y-1/2, -z+3/2; (vi) -x-1/2, y+1/2, -z+3/2.

